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Chapter 1

Theoretical Development of

Gain Modification

1.1 Introduction

We present a backward propagation network which simultaneously modifies
the gain parameters and the synaptic weights. The additional complexity
is minimized by the fact that the error signal for modification of the gain
of a neuron is proportional to the ordinary error signal foi the incoming
synaptic weights to the neuron. For a given neuron, the proportionality
factor is the reciprocal of its gain. Thus, only the ordinary error signal
must be propagated. The input to a synapse, which multiplies the error
signal in the standard modification rule for synapses, is replaced by the net
input to the cell in the gain modification rule. We also demonstrate that our
algorithm can be viewed -radient descent in rescaled synaptic vect LU
with effective time-depen_- -tep-constants which depend on both the
magnitude of the gains and 1 magnitude of the ordinary synaptic vectors.
In this paper, we show that the effect of gain modification by this algorithm
can be used to enhance the improvements in convergence rate obtained
by the use of high momentum in ordinary synaptic modification. The-'e
improvements occur without degrading the generalization capabilities of
the final solutions obtained by the network.
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1.2 Review of Notation for Standard Back-
ward Propagation

We begin with a short summary of the notation which we have used for
backward propagation in our previous work (Bachmann, 1988) [1]. The no-
tation differs somewhat from that used by Rumelhart, Hinton, and Williams
(1986) [61 and Werbos (1988) [71. i'or simplicity, we consider a three-layer
network. A typical network is illustrated in figure 1.1.

Ok

Output Layer

wW(2)

h i "Hidden" Layer

f. * * Input Layer

Figure 1.1: The ok label the output units, the hi label the "hidden
units", and the fj label the input units. Only some of the connections
are shown. Superscripts on synaptic weights denote layer index.

The feedforward equations are defined by:
NtNi (1 f 3 l + 00) (.1
j=l

N2  (1.)
N2 = '(2 )hs + 0(2) (1.3)

kok k (y ; )),i.,

o- is the output of the kth unit in the output layer, h-7 is the output of the

ith unit in the hidden layer, and f, is the value of the jth input. s denotes
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the pattern index. Additionally, recall that yk is the total input to the kth

output unit, and x is the total input to the ith hidden unit. 0(' ) is the bias

for the ith cell in the hidden layer, and 0(2) is the bias for the kth cell in

the output layer. Vk(z; A) is the sigmoid input-output function defined by:

ik(z;(1.51
1z) -e- z (1.5)

We have introduced explicitly the gains \(2) of the kth cell in the last layer

and )41) for the ith cell in the hidden layer. 1 2 , the energy ot pattern s,
is given by:

N2 1
E -(ok- Ts)2 (1.6)
k=1 2

A pattern gradient, which is used to modify the synaptic weights following

the presentation of each pattern to the network, is computed from the en-
ergy C. The backward propagation method is thus only an app oximation
to gradient descent since the true Liapui,)v function is really:

m

1 N2

= Z Z (o0 - )2  (1.7)
2 8=1 k=1

To make a connection with Rumelhart's delta error signal notation

(Rumelhart, 1988) [6], we note that by defining partial derivatives with
respect to the "net", or nct input to a cell, we have3:

a96 aok
ao, ay,a~ oa

- - 2:)(o, - T,)ok(1-o;) (.)

'In Rumelhart's original model there is no gain parameter A (A 1). Although initially

all gains are set to 1, our proposed model allows the gains to vary individually.
2 Hopfield (1984) [3] has used a gain parameter in the continuous version of his model to

study the effect of changing the character of the nonlinearity of the input-output function.
3 We have added superscripts to the error signals for greater clarity.
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az
N' 2 a , a o ' (9 y -' A 3

k=l k k

N 2-),M$)h(1 - h) ,(ok - r;)A, 21o'(1 - ok)w,. (1.9)

k=1

This allows one to write:

N2

at) ,) (1. A8  (2),(2)
\')hjs(l- h3)E Ao k,(110

k=1

The synaptic modifications are proportional to the negative gradient:

°(W(2) = -o):

a~o ayk= ,ays aW( (111

-77 (1.12)

Therefore, with the above definitions for 6(2
) and 6( 1, equations 1.11 and

1.12 become: 4

, ( 2) )  q,,.,,("2),, ' ( .3

(1.14)

Note that equation 1.10 defines the backward propagation of the error sig-
nals. Recall also that in standard backward propagation, a "momentum"
term is often used at each step of the modification procedure in the gradient
descent search for the minimum. Heuristically, the momentum term can

'As in Rumelhart et. al. (1986) [61, the biases are modified by the same procedure-,
however, the input for biases is defined to be unity.



be viewed as a means of increasing the step-constant when the curvature
of the energy surface is low and several successive modifications have the
same sign (Jacobs, 1988) [5]. The momentum term consists of adding a
small amount proportional to the previous modification, so that the actual
modification at time step t for the nth layer of synaptic connections is:

=(-)(wL)w - - + a-w )  (1.15)

where s(t) denotes the index of the pattern presented at time step t and
n: is a positive constant less than 1. One can also write this in a slightly
different form:

(n)) t (aE
-- ,(t)tk i H (1.16)

This form is more suggestive in showing that the use of a momentum term
is equivalent to a discrete approximation to a temporal integral average
with an exponentially decaying kernel. The kernel has the effect of em-
phasizing the influence of the patterns most recently presented, assigning
exponentially less weight to those patterns presented earlier in time.

1.3 Simultaneous Modification of Gain Pa-
rameters and Synapses by a Backward
Propagation Algorithm

In this section, we consider the possibility of modifying the gain parame-
ters and the synaptic weights simultaneously. To accomplish this, we have
formulated a backward propagation procedure which modifies the gain pa-
rameters in the network in a manner similar to the method used for the
synaptic weights. The procedure can take advantage of quantities already
calculated in the ordinary backward propagation procedure for the synaptic
weights, thus minimizing the additional complexity. The error signal for

the gain of a particular neuron is proportional to the ordinary synaptic er-
ror signal for the incoming synaptic wpights connected to the neuron. The
proportionality factor is just the reciprocal of the neuronal gain. Addition-
ally, the input to a particular synapse, which multiplies the error signal in
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the standard synaptic modification formula, is replaced by the net input to
the neuron for the modification of its gain.

We note in passing that other work has been done on gain modification
procedures, for example Kruschke (1988) [4]; however, Kruschke's proce-
dure does not use the gradient with respect to the gain. Rather, gains are
modified in the context of a competitive learning scheme, which is com-
bined with backward propagation modification of the synaptic weights. In
contrast, our scheme uses a backward propagation procedure for both gains
and weights, incorporating respectively the gradients with respect to the
gains and the weights.

To derive our model, we begin by defining rescaled error signals -Y k and
-Y() in terms of the error signals for the synaptic weights in equations 1.8
and 1.9:

Y(2) 1 6(2)
k A(2) A

k
1 a 8

1 0a8 ao

=--o:- rf)o (1 - o ) (1.17)

(1)'( 1"
1 b

A i

1 a- 8  o yOh
1N2 a9 8aio'ay' h;

;I)  ayk Oh 0x
N2-h(1 - ha) -(o _ T))o (1 _ s)(2). (1.18)
k=1

Given thcse definitions, we may write a backward propagation equation for
the rescaled error signals -f2 and qyl) by combining equations 1.17 and 1.18.

Alternatively, we could have derived this formula by simply replacing 6(2)

7



by2)( {2)n l  1))

by A and bti by A(')-,, in equation 1.10:
N 2

h)(2 (1.19)sgi -- i k , .k Wki

k=1

If we observe that:
(2)0ofI 0, (1.2 
k k k~\ ki(.)Oyk

then we have:

0o1 -0

1a 0o (1.21)

The same line of reasoning also allows us to write:

h_ _ OhI (1.22)

Therefore, we miay write:

(2) - a o

k aA( 2) o

Ik

- aLkl(2) ao

3 1 4h0, 0 ,
-- Ykiy (1.23

A-a(29 39 -

I _ (1.2,3)

Al) ah!

1 -h o .
i I ) ) a is

-ax C' ac, (1.241)
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where we have used equations 1.21 and 1.22 to write the derivatives with
respect to the gains in equations 1.23 and 1.24 in terms of derivatives with
respect to the net inputs y' and x-' to the kth cell in the output layer
and th, ith cell in the hidden layer respectively. Using the definitions in
equations 1.17 and 1.18, we can recast equations 1.23 and 1.21 as:

k k (1.25)

A aI = ('x (1.26)

For comparison with equations 1.13 and 1.14 describing synaptic modifica-
tion, we note that in equations 1.25 and 1.26 depicting gain modification,
the ordinary error signals defined in equations 1.8 and 1.9 have been re-
placed by the rescaled error signals defined in equations 1.17 and 1.18; and
the signal input to a particular incoming synapse (either h- or f* depend-
ing on the layer) has been replaced by the corresponding total integrated
potential to the cell, i.e. y- or x' depending on the layer. Since the rescaled
error signals, ', are proportional to the ordinary synaptic error signals, b,
we ne2ed only propagate the ordinary error signals 6 and obtain the rescaled
error signals locally by dividing by the cell gain. Equivalently, we can view
the error signal as a quantity which initiates changes in the input-output
characteristics of the neuron at the same time that it modifies the incoming
synapses to the neuron. From this perspective, the modification rule for
a synapse couples the ordinary error signal arid the input to the incoming
synapse with coupling constant 77, while the gain modification rule couples
the ordinary error signal and the net input to a cell with coupling constant

The only difference is the strength of the coupling, and, in fact, since

thie gain parameter is a more sensitive parameter than the synaptic weights,
we choose the initial coupling for the gains, a, to be an order of magnitude
smaller than that of the synapses in the simulations described here. ' Al-
ternatively, we will show in the next section that one can view simultaneous
gain and synaptic modification as a gradient descent in rescaled synapses
with effective step-constants which are dependent on the gain and magni-
tude of the ordinary synaptic vectors and are direction-dependent in the

'ITlie gains are all set to one initially. Therefore, the order of uagnitl e of the initi;d

coupling is odt.r-ymne, hy z. Even though the gains are chosen to he initially the same,

symm etry is still irr.k,:n by chooSing tie initial synaptic wk ig:hts randomly in a small
h y [pf'r¢ i bh



synaptic vector space. From this perspective, the effective step-constant
is now also time-dependent through its dependence on the gain and the

magnitude of the ordinary synaptic vectors.

1.4 Gain Modification Viewed as an Effec-
tive Time-Dependent Step-Constant

In developing our theoretical arguments, it will be easiest to consider the
effects of gain modification on ordinary backward propagation without mo-
mentum. It will be seen that the addition of momentum will not alter the
development here. To simplify matters, we adopt a notation which includes
synaptic weight vectors and biases in the same vector. We also change the
notation to a slightly more general form than that used in sections 1.2 and
1.3. For the ith cell in the nth layer, 6 we define:

~(n) tn), OH()

f ( n),, = (f- ),,, 1) ( .2 7 )

where the input to layer n, f-n), on- ),,, is _just the output vector of
the previous layer. r The jth component of w ), ,() then is just the
connection from the jth cell in the (n-1)th layer to the ith cell in the nth

layer. This allows us to write the output for pattern s of the ith cell in the

nth layer as:
.(n),0 

( .8

+ 1-I

In the case of nonmodifiable gains set equal to one, it is apparent that we
may view the norm of the vector -t (n) as the gain. This follows by rewriting
equation 1.28 as: o -/, 1 (12 )

1 (n) s

'The input layer is defined to have tihe index i 0.
7 To compare the notation for neuron activation uxsed earlier for a three la er syz!,.ti,

f-*, h", 6, with the current notation, we see that the inputs to the network would,l lv
f'll, = = , hidden unit outputs would be f = a1t layer

output would be P13)., = ) = 2 ,

'0



Here a,(n) is a unit vector in the direction of W, ). This leads us to ask if

modifying the gains, A ' ) , is truly advantageous. To answer this question,
we will need to define rescaled synaptic vectors according to:

-(n) - A(-) ' )  (1.30)

Note that with this definition equation 1.28 becomes:

( ), = 1
1 + e". ' ' ( )' " ( .1

n) (n)Since ui is just a rescaling of the synaptic vector 1i4, , we can ask how this

vector changes when we modify (n) and (n) separately. In particular, we

will find it useful to consider the changes in -,() along the direction of jjin)

and those in the hyperplane perpendicular to t"). We denote these two

components by (AI')t 11 and (A, "))±. We also define O" to be a unit

vector in the direction of (AIZn)± in the hyperplane orthogonal to i4). If

the changes in An ) and W(), and thus in iZ(, are sufficiently small, then
we may write:

\() A,)  I (+ )  (A ) (1.32)= ,i w, ) "0w " + ,i

The change A,,n ) can be rectified into two orthogonal components: 8

W -

V ( )(n) ( n) . VC,()5')) (1.33)

Note thit A An ) is just:

-a ) (1.34)

However, we can write '__' in terms of the component of V,() along
ax (n)

To see this, observe that we may write:

a 8' - a(i(.-) -

0n) n ,( ) ( n) , a ) (1.35)

8 Here we neglect momentum.
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At the same time, note that:

W -~ns N _vnv a la -' a ( u i , n c) ,,

a_" ___• _(),0 (1.36)

From equations 1.35 and 1.36, we obtain:

(1.37)

n ) I I

Having derived equation 1.37, we can now combine it with equations 1.33
and 1.34 to rewrite equation 1.32 as:

77 A n

+ (O") . V 1 ,!) )vIn ) }, (1.38)

where we have used the fact that 12Y') = .). This allows us to write:
)) (n) 1 + 0 i

(An +~) 77 A 0 ( .V (~ !n (1.39)

We can recast this equation in terms of gradients with respect to ,i(n) by
converting the gradients with respect to W[nj . In doing so, we note one
subtlety about the gradients which were used to derive equation 1.39. The
gradient, VP &, which appears in ordinary backward propagation (equa-
tion 1.33, and therefore in equation 1.39, is a vector of partial deriva-
tives evaluated at constant At) . We could denote this explicitly by writing
(Vwpn)$')AI. Similarly, in the modification of the gains (equation 1.34),

is calculated as a partial derivative to be taken at constant 1IH which

we could write as (0-,,j)w(,,). In fact, equation 1.37 is an equation relating

12



to (v )!. Because the gradient of the energy with respect
to Icf'", (V A ) (8).), is calculated for fixed AIn) , we may easily express it

in terms of the gradient with respect to i"), (Va,.) ')A.). We see that the

jth component of the two gradients are related by:

__ __ X _ _ ' I _____)

= A$-)( a8
--- ( n )An) (1.40)

We write this compactly as:

(VWA ) .i)A.). (1.41)

This allows us to rewrite equation 1.39 as:

I.n) 7 ,In)

(1.42)

We see that a backward propagation algorithm which simultaneously
modifies the synaptic weights and the gains is equivalent to a gradient
descent in the rescaled synapes " ( ) with time-dependent step-constants.ti)

In the direction of the rescaled synaptic vector, the step-constant now has
a quadratic dependence on the magnitudes of the gain and the ordinary
synaptic vector, and in the hyperplane perpendicular to the direction of
the rescaled synaptic vector, the step-constant has a quadractic dependence
only on the magnitude of the gain. From equation 1.42, we obtain:

171 r(A ) + a I () 2 (1.43)

(A))(1.44)

The fact that the step-constants are positive-definite ensures that we

always take steps in the direction opposite the gradient; therefore, we can
classify this approach as a gradient descent algorithm. Momentum can be

added to the above argument without loss of generality, since it simply adds

13



a small amount proportional to the most recent change; the only difference
is that now the step-constants are time-dependent.

We note that the derivation of our model, resulting in equation 1.42,
depended on the approximation in equation 1.32 that we take sufficiently
small steps in changing the ordinary synapses and gains. If the synapses
grow to be very large, it is possible that this approximation may break
down. However, depending on our choices of r/ and a, the approximation
will be valid for at least part of the evolution of the network and certainly
during the early development. In a continuum model, the derivation would
be exact, provided that we replace the single pattern energy , with the
total energy over all patterns = E, j,. For such a continuum model, we
would replace equation 1.32 with:

di~~ (A~Wi(1  (n+ ) dAi~r (1.45)
dt dt ' dt ' dt

Similarly, we would replace equation 1.33 with:

dt W n W()-V-()= + f) n lo lt . (1.46)

and equation 1.34 with:

-- (1 .4 7 )dt a.

In equations 1.35, 1.36, and 1.37, we would need to sum both sides of the
equation over the pattern index s, to obtain the appropriate relationships
for the total energy . In the end, we would obtain an exact nonlinear
differential equation of the form:

( i)1~ r/(AlF))2 (1+ ( ) 0 . (1.48)d)L)= - 0(, 1a.

from which we would obtain the effective time-dependent step-constants in
equations 1.43 and 1.44.
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1.5 Impact of the Effective Time-Dependent
Step-Constant

In the previous section, we derived the form of the effective step-constant
and determined that 7711 grows quadratically as a function of the magnitudes
of the ordinary synaptic vector and the gain and that 77-, the step-constant
in the direction of change of ) grows quadratically with the gain. It may
be particularly important in the early stages of synaptic development when

. F4")" Is small and o() can be approximated linearly as: 9

o(r-),s - 1

1 + e-t i .j ). "

1
2 - -"(n) F

1 u- ". (n ) '
p ( 1 1 -(2 + (1.49)

2 2

In this regime, therefore, the error signals can be approximated as poly-
nomial functions of F C'n ) • P-),-, and the the quadratic dependence of the

step-constants on I - (n) I and A( ) is likely to be significant. 10
In the next chapter, we will demonstrate that the use of high momen-

tum leads to shorter convergence time. When gain modification is combined
with high momentum, there is further improvement in convergence time.
Empirical results suggest that when high momentum is used shorter con-
vergence times result because the synapses develop more rapidly. When
gain modification is added to high momentum, the rate of development of
the effective synapses, (n) is accelerated further.

9 The initial synaptic weights are small: between -0.1 and 0.1, and the connectivity of
the networks we considered in the next chapter was small. Additionally, the input patterns
were confined to the unit disk. Therefore, we can expect that thiq approximation will be
valid at the beginning of synaptic development.

L'Furthermore, note that the ordinary error signals, as shown earlier, are explicitly
dependent on the gains. This may also play a significant role in the time evolution of the
network.
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Chapter 2

Experimental Benchmarks for

Gain Modification and

Momentum

2.1 Momentum and the Concentric Circle
Paradigm

We describe below some benchmarks for the concentric circle paradigm. In
this paradigm, we train a backward propagation network with two inputs
representing the x and y coordinates of a point in the unit disk. Within the
unit disk, there are two pattern classes separated by a circular boundary
at r - .I This divides the class into two regions, an inner disk and an
outer annulus, both of area !. For the single outplt unit, the target output
for patterns in the outer annulus is 1 and for patterns in the inner disk is
0. In the simulations described below, the network had one hidden layer
of 6 hidden units, and the network was trained on 40 patterns randomly
selected from the unit disk. For each setting of the parameters, we repeated
the experiment 90 times starting the weights at different random points in a
small hypercube; each initial weight was chosen randomly betweeen 0.1 and
-0.1. Additionally, a different randomly selected set of 40 patterns was used
in each experiment. In all experiments the step-constant in the first layer
of connections was two times the size of the step constant in the second
layer. We have found that this accelerates the learning procedure, a fact

16



which is consistent with what Becker and Lecun (1988) [21 have observed.
In their work, they determined that the step constant should be scaled by
a factor of -- where N,, for a given layer of synapses, is the number of
connections in that layer onto a neuron in the next layer of neurons. If this
scaling is a general principal, then, for our particular network architecture,
we should have increased the step-constant in the first layer of synapses
by a factor of v/3. However, by choosing a factor of 2, we are at least

approximately close to what Becker and LeCun found to be ideal for the
binary input paradigm which they investigated. As of yet, we have not
studied in great detail the scaling of step-constants as a function of the
number of synaptic connections in a layer. However, for consistency, in the
simulations described in the next section, we chose a, the step-constant
for gain modification, to be twice as large for neurons in the hidden layer
compared to its value in the output layer.

In one set of experiments (series ab), we took the step-constant to be
77 = 0.4. The momentum was varied by increments of 0.1 from 0.0 to 0.9,
and 90 experiments were performed at each value of momentum. The mean
and standard deviation of convergence time are plotted for each value of
momentum in figure a.1 of appendix a. Only those experiments converging
within 20000 epochs 1 2 were used to compute the means and standard
deviations. From the graph, it is apparent that the mean convergence
time decreases with increasing momentum. The large error bars, however,
are somewhat misleading and tend to underemphasize the rather dramatic
improvement in convergzLce time at high momentum. The size of the errors
is typically comparable to the mean and is due to the fact that there are
a number of trials for which the convergence time is several times larger
than for the majority of the trials. Given the limited number of trials, 90,
this tends to make the error bars large and to mask the improvement of
the central cluster of trials. With increasing momentum, the central cluster
of convergence times becomes narrower and moves toward shorter Limes.
We illustrate this point in a series of graphs for series ab, figures a.4- a.13,
ordered by momentum, in which we plot a histogram of number of trials
converging vs. convergence time.

'An epoch is defined to be a complete presentation of the data set sequentially. How-
ever, we modify the network following the presentation of each pattern.

2 1n our experiments, we defined the convergepce of a network to occur when the network

output was within 0.1 of the target output for all training patterns.
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It is interesting to note that at low momentum, there L evidence of
at least two distributions in the convergence times. These two clusters
gradually move to shorter convergence times and merge to form a single
cluster at low convergence time.

Figure a.2 of appendix a shows the fraction of trials converging within
20000 epochs. Over most of the range of n, that is for r. between 0.0 aad
0.8, the percentage of trials converging is in the range of: 89 - 98%. At
very high momentum, however, r = 0.9, the percentage of trials converg-
ing drops to 79%. At the same time, the amount of generalization by the
network is not momentum dependent. This is readily apparent in figure
a.3 of appendix a, in which we plot the mean and standard deviation of
the fraction of 5000 randomly selected test patterns which were correctly
identified by the network after the network converged. We also graph the
fraction which could be correctly identified by the network's "best guess",
tht is the output which the network was closest to, 0 or 1. Means and stan-
dard deviations are depicted only for those trials which actually converged
within 20000 epochs. As indicated by the small error bars, the generality
of the solutions varies only weakly across trials for a given value of mo-
mentum. Furthermore, as we have noted, the mean generality is constant
across momentum. We expect, therefore, that solution generality should
not have a strong dependence on convergence time.

We can conclude also that the length of convergence time has very little
to do with the generality of the solution reached for this paradigm; we
infer this from the fact that the error bars are small in the generalization
graph in figure a.3. It is interesting to ask, then, which features might
distinguish the network solutions with long convergence time from those
with short convergence time. In appendix b, we have produced a scatter
plot of the mean and standard deviation (over the neurons in a particular
solution) of the magnitude of synaptic vectors vs. convergence time for
series ab. As defined in the previous chapter, each of these vectors includes
both the ordinary synapse and the bias. For each layer, there is a set of 3
graphs, ordered in increasing momentum, one at zero momentum (r = 0),
one at intermediate momentum (K = 0.5), and one at high momentum
(K = 0.9). The graphs for layer 2 are in figures b.1- b.3, and those for layer
1 are in figures b.4-b.6. We note that as the momentum is increased, the
longer convergence times move toward the cluster of convergence times at
shorter times, this region of the graph becomes more dense, and itself moves
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simultaneously closer to the origin along the time axis. As a consequence,
as the momentum is increased and the number of trials converging within
the first several thousand iterations becomes more dense, we observe that,
as a population, the synaptic ,orms rise more rapidly as a function of
convergence time.

2.2 Gain Modification Combined with High
Momentum Synaptic Modification

We have seen from the histograms of number of trials converging vs. con-
vergence time for series ab in appendix a, that high momentum can dra-

matically improve the convergence rate for the majority of the trials. With
this in mind, we combined the gain modification procedure described ear-
lier with high momentum synapiAc modification. We chose a, the gain
moaification step-constant, to be an order of magnitude smaller than the
synaptic modification step-constant, rl, since the gain is, in general, a more
sensitive parameter. In series ag, we examined three different cases: no
momentum (sag3), high momentum (sag2), and high momentum with gain
modification (sag4,sag5,sag6). In each run, we performed 500 experiments.
We summarize the parameters chosen for these runs: 3

Run Number r7 ,¢ a
sag3 0.3 0.0 0.000
sag2 0.3 0.8 0.000
sag5 0.3 0.8 0.020
sag4 0.3 0.8 0.038
sag6 0.3 0.8 0.060

In figure c.1 and c.2 of appendix c, we plot the percentage of trials con-
verging vs. convergence time on two different time scales for the runs listed
above. Detailed histograms of sag2, sag3, and sag4, comparing the three
cases on two different time scales, the first 6000 epochs (figures c.3-c.5),
and the full 26000 epochs (figures c.6-c.8), are also provided in appendix c.

'As noted earlier, t7 -- 2Y and a - 2c for the first layer of synapses and the gains of
the hidden units respectively. The values for t and a in the table are those values used in

the second layer of synapses and the gains of the output units respectively.
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Examining the graphs in figures c.1 and c.2, we see that without momen-
tum or gain modification, 80% of the simulations converge within ; 10000

epochs. High momentum clearly leads to much more rapid convergence,
for we obtain the 80% level within ; 1500 epochs. When gain modifica-
tion is added to high momentum, we achieve the 80% level within 500
epochs. This is 3 times faster than high momentum without gain modifi-
cation and 20 times faster than the bare algorithm. This is a tantalizing
result, for on a more complex problem where longer convergence times are
more probable, reaching the 80% level in a third of the time (compared
with high momentum alone) could be quite significant. Asymptotically,
the runs in which gain modification was combined with high momentum
(sag4, sag5, sag6) also achieved the highest percentage of trials converging,
z 95-98%. For high momentum without gain modification, the asymptotic
convergence rate was slightly lower at z 93%, and for the bare algorithm,
even less at _ 90%.

A comparison of the synapses obtained in these three cases is illustrated
in the graphs in appendix d. Figures d.1, d.2, and d.3 graph the the synap-
tic vector norm 4 in layer 2 vs. convergence time. Figure d.1 is the no
momentum case (sag3), figure d.2 the high mornntum case (sag2), and
figure d.3 the high momentum with gain modification case (sag4). As a
population there is a trend toward a longer synaptic norm in layer 2 as
time increases when the bare algorithm is used (figure d.1). This increase
in synaptic norm occurs more rapidly when high momentum (figure d.2)

is added to the bare algorithm. When we combine high momentum with
gain modification, (figure d.3) there is some depre..sion of the size of the
synaptic norm. In this case, however, the length of the effective synap-
tic vector, or rescaled synaptic vector, depicted in figure d.4 in appendix
d, develops much more rapidly than in the high momentum case without
gain modification. This is due to the fact that the gains in this layer as a
population are typically z 1.4-2.5 (see figure d.5 of appendix d where the
gains are plotted as a function of synaptic norm for layer 2). This seems to
speed the process of learning, since solutions with longer synaptic norms
are achieved without the requirement of the synapses' becoming large; a

single multiplicative factor, the gain, hastens the change of the length of
the synaptic vector.

4 As before, this vector includes both the ordinary synaptic vector and the bias.
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In layer 1, a similar trend obtains (figures d.6- d.9). ' As in layer 2,
longer effective synapses in layer 1 are achieved more rapidly by modifying
the gain parameter. When we compare figures d.6 and d.7, we see that
the increase in E(I W'1.(1 ) occurs more rapidly as a function of convergence
time for the majority of the population as we go from no momentum to high
momentum. 6 However, the synaptic norms (figure d.8) are not significantly
depressed in the case of high momentum with gain modification; this leads
to rescaled synaptic vector norms which are much larger than the other two
cases (see figure d.9). ' In figure d.8, the ordinary synapses are probably
not significantly depressed in layer 1 because the step-constant was twice
as large for layer 1, as we noted earlier.

The mean gain is plotted versus mean synaptic -' ctor norm in figure
d.10. The gains are principally between 1.0 - 2.0 in this layer and act to
accelerate the development of the length of the effective synaptic vectors.

Rapid development of the synaptic vector norms appears to be the factor
which decreases the convergence time when high momentum is used, and
this effect is further enhanced when gain modification is used with high
momentum. We note also for completeness that the use of gain modification
did not in any way degrade the generality of the solutions obtdined.

2.3 Future Directions

In the work described above, we have shown how gain modification can
enhance the improvements in convergence rate obtained with high momen-
tum in synaptic modification for a simple concentric circle paradigm. For
completeness, we plan to do simulations in which gain modification is used
without momentum. In addition, further analysis and reduction of the data
already obtained is in progress. We plan to establish similar benchmarks for
higher dimensional problems, for instance for higher dimensional concen-
tric hyperspheres. This will allow a comparison of how the improvements
obtained with gain modification scale with dimensionality. Finally, we will
establish benchmarks for gain modification for more complex problems such

5 As before error bars represent the standard deviation with respect to the neurons in
the layer.

6 E is the expected value, or mean.
7 Note that the scale of the graph in figure d.9 is different from the previous graphs.
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as parity.
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Appendix a
Graphs of series ab: Convergence Properties as a Function of

Momentum
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Appendix b
Graphs of series ab: Magnitude of Synaptic Vectors vs.

Convergence Time
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Appendix c

Graphs of series ag: Convergence Properties for

(1)No Momentum, (2) High Momentum,

(3) High Momentum with Gain Modification
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Appendix d

Graphs of series ag: Magnitude of Synaptic Vectors vs.
Convergence Time
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